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A cylindrical liquid bridge is unstable when its length is longer than its circumference,
the Plateau–Rayleigh limit. This capillary instability is modified by fluid motions
adjacent to the interface, which can be induced by thermocapillary stress, among
other means. A simple flow model with symmetry that mimics the situation in
encapsulated floating zones is analysed. The interfacial balance equation is formulated
as a bifurcation problem, appropriate when the flows are nearly rectilinear. This
balance captures the competition between capillary stress and the flow-induced
pressure. The fluid motions are shown to have a stabilizing effect; bridges much
longer than the classical limit are stabilized. Numerical branch-tracing and the
Lyapunov–Schmidt reduction methods provide the bifurcation structures of branching
solutions. A normal-form analysis predicts standing-wave patterns due to mode–mode
interaction. The model is proposed as an explanation for the extra long float zones
observed in various spacelab experiments.

1. Introduction
In space shuttle experiments on float-zone crystal growth, the molten zones are

created by subjecting a cylindrical sample of solid material to a ring heater. The
liquid bridge thereby created is hot in the middle (midplane) and cooler away from
the heater. Far enough away from the midplane, the liquid zone is bounded by the
solid unmelted material. Variation of the temperature along the liquid interface results
in a thermocapillary stress that drives fluid motion in the liquid. Several experiments
show that bridges may be longer than the Plateau–Rayleigh (PR) limit. From an early
flight (STS-41D; 1984) came a qualitative report of float-zone length nearly twice the
PR limit (Murphy et al. 1987). These authors suggested that a thin oxide layer of high-
melting-point material may have formed on the interface and may have thereby acted
as a tubular container. Measurement of the layer thickness was not possible. During
a more recent flight (STS-57; 1993), there were again observations of extra-long float
zones, with lengths reported up to 50% longer than their average circumference
(Abbaschian 1994; Raman 1995). In this case, the behaviour was captured on video
tape. Long bridges were observed for several different encapsulant liquids in separate
experiments. An oxide or contaminant layer seemed unlikely in this case. Instead, the
thermocapillary effect was recognized as the most likely cause (Saghir, Abbaschian &
Raman 1996). We argue that these observations can indeed be qualitatively explained
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Figure 1. Schematic bifurcation diagrams near the first and second interfacial instabilities of
a liquid cylinder, showing the branching structures in the (Ca = 0) no-flow (a, b) and (Ca > 0)
flow (c–e) cases. The bifurcations (a) and (b) are deformed to (c, d) and (e), respectively, due
to the thermocapillary flow induced by a symmetric heating. Solid circles represent singular
points. The free-surface shapes of the corresponding branches are sketched in (a) and (b).

by thermocapillary flows. In particular, a competition between capillary and flow-
induced pressures can lead to anomalously long stable bridges. The experiments
were technically complicated and their primary goal was unrelated to zone length so
that details are limited. We present here a simplified model for the interaction. Its
predictions are consistent with the limited information from observation.

In zero gravity in the absence of liquid motion, a liquid cylinder of radius Ro

becomes unstable at a critical length L = 2πRo (Plateau 1873; Rayleigh 1879), at
which length there is a cross-over in dominance of capillary pressures associated
with the two principal curvatures of the free surface. The shapes of the static
interfaces are governed by the Young–Laplace equation with a volume constraint.
These results are now summarized. On increasing its length, a pinned liquid cylinder
exhibits a countably infinite sequence of shape instabilities. The shapes correspond to
eigenmodes and occur at eigenvalues in a bifurcation analysis. The instability at the
Plateau–Rayleigh limit is the first such eigenmode and it has an antisymmetric shape.
Destabilizing shapes that are antisymmetric about the bridge midplane alternate with
those that are symmetric. In a diagram that plots surface shape deflection against the
bridge length (figure 1a, b), the bifurcation diagram, the former class of solutions are
pitchfork bifurcations whereas the latter are transcritical bifurcations.



Thermocapillary suppression of the Plateau–Rayleigh instability 99

In the presence of liquid motion, an additional pressure gradient contributes to
the stress-balance equation and the bifurcation diagram is modified. Symmetry plays
a key role in the flow–shape interaction. Flow induced by thermocapillary stress
acting symmetrically about the midplane delays the pitchfork bifurcation (figure 1c)
and breaks the transcritical bifurcations into turning-point singularities (figure 1e).
Increasing the flow strength further can turn the subcritical pitchfork bifurcation to
supercritical, leading to stabilized interfaces (figure 1d). In this situation the stability
limit jumps to the position of the turning point, and the maximum bridge length can
be significantly longer than the classical ‘2π’ limit (figure 1e).

It is known that infinite cylindrical interfaces can be stabilized by appropriate axial
flow profiles. Xu & Davis (1985) showed that capillary breakup could be suppressed
(using isothermal flow) and suggested that long coherent jets could be achieved
thereby. The flow convects disturbances along the free surface as travelling waves
which can interfere with the destabilizing capillary pressure (Russo & Steen 1989;
Hu, Lundgren & Joseph 1990). Stabilizing flow profiles can also be generated by
thermocapillarity for annular films (Dijkstra & Steen 1991). The thinness of the
annular liquid layer can be used to amplify the stabilizing pressure distribution.
Stability analyses of the unbounded cylinder usually use a normal-mode ‘temporal’
analysis with the perfect cylinder as the base-state solution. In contrast, for bridges of
finite length, the translational symmetry along the bridge axis is broken. Consequently,
stability analyses are complicated by the closed ends which result in a base state with
cellular flow patterns and deformed interfacial shapes that usually cannot be written
in analytical form.

A number of studies have incorporated realistic boundary conditions at finite bridge
ends in order to examine the dynamics of liquid bridges subject to forced oscillations
(Borkar & Tsamopoulos 1991; Mancebo, Nicolas & Vega 1998). All of these studies
exclude bridges of lengths close to the PR limit, however. The dynamics they examine
does not include competition with the PR capillary instability.

Previous works that look at the interaction of the Plateau-Rayleigh instability with
thermocapillary-induced liquid motion are mostly numerical in nature. A challenge of
such an approach is capturing the unstable states which emanate as branches at the
PR instability. The codimension-two PR singularity has a multiplicity of associated
solutions that can be difficult to resolve computationally (Chen, Shen & Lee 1990).
Rybicki & Floryan (1987a, b) report on cellular flow structures and interfacial profiles
due to thermocapillary forcing for lengths just short of the PR limit. Chen et al. (1990)
show that the maximum stable bridge lengths can be changed slightly due to the flow.
Dijkstra (1993) considers linear stability of a finite bridge computationally and also
reports a small change in maximum stable bridge length for certain flows beneath the
interface. In these studies, none of the shifts to longer lengths reported exceeds a few
percent.

Mashayek & Ashgriz (1995) study the nonlinear competition between capillary
and thermocapillary breakup for periodic disturbances to an infinite cylindrical
interface, using finite-element simulation. They solve both the hydrodynamic and
thermal problems for a series of initial conditions. They locate the boundary between
domains of attraction in part of the parameter space (Reynolds, Marangoni, Biot and
capillary numbers). On one side of the boundary, the disturbance evolves to breakup
driven by capillary instability, while, on the other side (for the same wavenumber
and amplitude), the disturbance evolves to breakup driven by the thermocapillary
effect. The boundary is interpreted as a locus where thermocapillary and capillary
forces cancel one another – a ‘neutral’ stability is attained there. In contrast, in the
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present paper, conditions are sought to make a previously unstable state stable. Here,
‘stabilization’ means that disturbances will decay to the stabilized state.

Saghir et al. (1996) pose a model that consists of an axisymmetric liquid bridge
encapsulated by an outer liquid. They fix the bridge length (about 10% less than the
PR limit) and, using the finite-element approach, examine the interface deformation
that arises due to the competition between flow-induced pressure of thermocapillary
origin and capillary pressure variation along the interface. The choice of encapsulant
liquid is varied in an attempt to minimize interface deformation for fixed temperature
difference across the ends. They find that the encapsulant with smallest gradient in
interfacial tension corresponds to the smallest deformation.

Another group of finite-bridge studies considers an isothermal flow generated by
an imposed shear stress at the interface interacting with the PR instability (‘half-zone’
geometry). That is, the imposed shear is unidirectional. In contrast, the full-zone
geometry studied in this paper has zero shear at the midplane by symmetry. Using
an approach similar to that of this paper it is found that the nonlinear interaction of
the flow and capillary PR instability can combine to yield bridges slightly longer than
cylindrical bridges at the PR limit (Chen et al. 1999). Experiments are consistent with
the predictions (Robinson 2001). In a related study (Atreya & Steen 2002), motivated
by experiments that use real-time feed-back control to stabilize the PR mode up to
nearly 40% beyond where it is unstable for the uncontrolled system (Robinson 2001),
the nonlinear interaction of the flow with the next capillary instability (at 8.9/2 π
times the PR length) has been analysed and found consistent with experiment.

In the spacelab crystal-growth experiments (STS-57 1993) it was learned that a thin
layer of a second fluid surrounding the molten zone (an encapsulent) can improve the
interfacial stability (Abbaschian 1994). Interactions among momentum, heat and mass
transfer, and phase change during crystal growth makes simulation of the complete
physical process cumbersome. In addition, errors in measuring the bridge lengths,
owing to instrumentation and a protocol designed primarily for other purposes, limits
the information content of the observations. Both these circumstances favour an
approach that captures the heart of the mechanism while being insensitive to details of
the experiment (or, at least, an approach which recognizes which details do not matter).
Bifurcation analysis couched in singularity theory is precisely such an approach. Its
power in similar situations has been demonstrated in numerous instability phenomena
in fluid and solid mechanics (Stewart 1981), including the Ruelle–Takens scenario for
the transition from laminar to turbulent flow (Guckenheimer 1986).

In this paper, we present a model problem for the influence of flow on the Plateau–
Rayleigh instability. The aim is to capture without unnecessary detail the rele-
vant physics that accounts for interfacial stabilization under the action of the
thermocapillary flows. For simplicity, we shall assume a liquid bridge of fixed length
and non-isothermal free surface, and ignore the melting and solidification processes.
To illustrate the stabilization mechanism, we model the bridge as a thin layer of liquid
(the molten metal) with an interface that is subjected to a stress of thermocapillary
origin. The bridge liquid surrounds a solid core. The extent of the solid core is a
control parameter in the model. The effect of the thin external encapsulant layer is felt
through the interfacial stress balance. Fluid motion in the encapsulant is not explicitly
modelled. According to the model, the flow-induced lubrication pressure competes
with the capillary tension and helps to stabilize the free surface. The formulation is
set up as a bifurcation problem. The symmetry issues involved are discussed in the
context of the underlying bifurcation structures (the universal unfolding). Singularity
theory and normal-form analysis are employed. They are well-suited to revealing the
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Figure 2. Liquid float zone in zero gravity, with an outer radius Ro, a solid core Ri , and a
ring-like heater placed at the midsection of the bridge.

richness of the nonlinear interaction and to identifying which ‘imperfections’ are the
most sensitive near instability. We then discuss what could be expected in the crystal-
growth experiments where a second layer of liquid is employed (the encapsulant).

We organize the remaining sections as follows. In § 2 we set down the basic
assumptions that lead to the flow-modified Young–Laplace problem. Symmetric
heating, simulating a full floating zone, induces the thermocapillary stress. The
lubrication approximation is used to model the flow-induced pressure. Bifurcation
analyses including numerical branch-tracing calculations and a Lyapunov–Schmidt
reduction are presented in § 3; bifurcation diagrams show the effects of the flow upon
various eigenmodes of the capillary instability. The main result is the suppression of
the Plateau–Rayleigh limit. The birth of limit cycles corresponding to standing waves
is also predicted. A brief discussion in § 4 closes our presentation.

2. Interfacial balance equation
Consider a long axisymmetric cylindrical liquid annulus with an inner radius Ri and

outer radius Ro encircled by a ring-like heater (figure 2). The ‘free’ outer (fluid–liquid)
and the inner (liquid–solid) interfaces bound a layer of Newtonian liquid, forming a
liquid bridge in zero gravity. The heater creates a temperature difference �T along the
free surface, which results in a surface-tension variation �σ below a reference value
σ̄ . The liquid density ρ and viscosity µ are assumed to be constants, independent
of temperature. A passive gas of negligible density and viscosity surrounds the free
surface. The thermocapillary stress induces a motion in the liquid.

We examine the situation when the viscous force of the liquid balances the
thermocapillary force. The velocity, length, pressure and temperature scales refer
to V ≡ �σ/µ, Ro, µV/Ro and �T , respectively. A cylindrical coordinate system (z, r)
is employed, where the z-axis coincides with the bridge centreline and u is the velocity
component in the z-direction. An aspect ratio A ≡ 1 − Ri/Ro represents the average
thickness of the liquid layer, l ≡ L/Ro denotes the bridge length, and σ̂ ≡ σ/σ̄ is the
scaled surface tension.

We assume surface tension to be a linear function of surface temperature, σ̂ =
1 − Ca T , where the capillary number Ca is defined as

Ca ≡ −∂T σ�T

σ̄
� 0, (2.1)

measuring the strength of the thermocapillary effect. In principle, the interfacial
temperature can be obtained by solving the heat equation and appropriate boundary
conditions. Here, we use a sinusoidal function, T = sin(πz/l), z ∈ [0, l], to model
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the temperature distribution. This distribution simulates the effect of external heating
that is symmetric about the midplane of the liquid column and may be realized in the
limit of large heat-transfer coefficients (large Biot numbers), in which case the tem-
perature of the free surface approximately equals the temperature in the ambient. The
sinusoidal profile is viewed as the leading-order approximation in a Fourier expansion
of the ambient temperature. The surface tension is then given by

σ̂ = 1 − Ca sin(πz/l), (2.2)

and the momentum transport is coupled with the heat transport only through this
imposed condition. The liquid motion is driven by a prescribed shear stress acting
upon the free surface.

According to (2.1), the case Ca = 0 occurs when the bridge is isothermal or in the
limit of large reference surface tension. The latter limit is not of interest, as reflected
in the chosen scaling (for Ca = 0, the scaled σ̂ = 1 rather than 0), since then the
interface is non-deformable. The present stabilization mechanism requires capillary
deformation.

For thin liquid layers and slow fluid motions a lubrication approximation is
appropriate to describe the flow profile induced by the thermocapillary stress. The
velocity u is obtained by integrating the Stokes equation

r−1∂r (r ∂ru) = ∂zp, (2.3)

which yields a type of core–annular flow relating velocity u, pressure gradient ∂zp,
and shear stress τs on the free surface:

u(z, r, t) = 1
2
h ln(r2/ω2) τs − 1

4
[ω2 − r2 + h2 ln(r2/ω2)] ∂zp. (2.4)

Here, r = h(z, t) defines the shape of the free surface, and ω ≡ Ri/Ro = 1 − A

denotes the relative position of the inner radius where the motion must vanish. The
momentum transport in the radial direction has been neglected and hence p = p(z, t).
This is justified by the thinness of the liquid layers resulting from the long-bridge
(or small-aspect-ratio) configuration (A/l � 1). The appropriate measure of inertia
to viscous force in the bridge liquid is A/l(ρV R0/µ) (a Reynolds number). Note
that, although we refer to the flow model as the ‘lubrication approximation’, this
assumption is consistent with a ‘rectilinear flow’ approximation (common in coating
flow analyses) which can be appropriate for Reynolds numbers of order one and
greater for thin layers provided deformations are small and turning regions occupy a
small fraction of the flow domain.

We shall also assume that the fluid, liquid and solid phases meet at sharp corners,
such that the free surface is pinned at the two ends of the bridge: h = 1 at z = 0 and
z = l. The interfacial shape is axisymmetric, encloses a cylindrical volume∫ l

0

h2 dz = l, (2.5)

and satisfies the mass-conservation equation

∂th
2 + ∂z

∫ h

ω

2u rdr = 0. (2.6)
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The turning flow patterns near the two bridge ends are neglected, but the finite-end
effect is accounted for by the zero-flux condition through each cross-section:∫ 1

ω

u rdr = 0 at z = 0 and z = l. (2.7)

In this lubrication approximation, the normal stress and tangential stress balances
at the free surface are governed by the equations

p = Ca−1σ̂K(h), τs = Ca−1∂zσ̂ , (2.8)

where K(h) is the curvature:

K(h) ≡ 1

h[1 + (∂zh)2]1/2
− ∂2

z h

[1 + (∂zh)2]3/2
. (2.9)

Combining the flow field (2.4) with the mass conservation (2.6), integrating twice and
applying stress balance equations (2.8), one obtains∫ z

0

[
Ξ (h)

Θ(h)
∂zσ̂ +

Ca

Θ(h)

∫ z

0

∂th
2dz′

]
dz + Ps = σ̂K(h), (2.10)

in which Ξ and Θ are functionals of the interfacial shape,

Ξ (h) ≡ h

∫ h

ω

ln(r2/ω2) rdr, (2.11)

Θ(h) ≡ 1
2

∫ h

ω

[ω2 − r2 + h2 ln(r2/ω2)] rdr. (2.12)

Equation (2.10) describes the evolution of the free surface with pinned boundaries.
The functionals Ξ and Θ result from the integration, and the static pressure Ps and
zero-flux condition (2.7) supply the integration constants. The integral term in (2.10)
expresses the flow-induced pressure. Let H ≡ h − ω = h + A − 1 denote the liquid
film thickness. It can be readily shown that

u = O(A/l), Ξ ∼ H 2, Θ ∼ 2
3
H 3, K ∼ 1 − H − ∂2

z H, (2.13)

when A � 1. Equation (2.10) then becomes a ‘Hammond’-type long-wave equation
for the dynamics of thin liquid films, but written in integral form and coupled with
thermocapillary convection (Hammond 1983; see also Oron, Davis & Bankoff 1997
for a review). We shall retain here the form of a core–annular flow to include the case
of completely molten cores in long bridges (A ∼ 1, l � 1). In the balance equation,
the capillary pressure due to the shape curvatures is exact but the flow-induced
pressure is an approximation. This approach has been applied to model breakup of
viscous jets (Eggers & Dupont 1994) and capillary films (Gauglitz & Radke 1988)
and has been shown to give satisfactory results even when the free surfaces have large
deformations.

3. Bifurcation structures
Equation (2.10) can be thought of as a bifurcation problem in length l with

cylindrical interface (h ≡ 1) and quiescent liquid as the base state. In the absence of
flow (Ca ≡ 0) the Young–Laplace problem is recovered in which the static pressure Ps

corresponds to the Lagrange multiplier of the volume constraint in an appropriate
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energy minimization formulation (Gillete & Dyson 1971). The presence of the flow
introduces an unfolding parameter Ca which perturbs the solutions away from
the base-state solution. For convenience in the bifurcation analysis, we stretch the
coordinate using a new variable x ≡ z/l. Thus, the interface deflection function,
defined as

η(x) ≡ h2 − 1,

has fixed boundary and volume constraints independent of the bridge length l:

η(0) = η(1) =
∫ 1

0
η(x)dx = 0. We then treat l as the preferred bifurcation parameter.

The steady-state problem is defined through a mapping,

F (h; l, Ca) ≡ σ̂ (x; Ca) K(h; l) − Ps −
∫ x

0

Ξ (h)

Θ(h)
∂xσ̂ (x; Ca) dx, (3.1)

where solutions of (2.10) correspond to the null space of this mapping. Note that
∂z = l−1∂x so that the curvature K is a function of l after the transformation. The
static pressure scalar Ps is viewed as a bounded functional acting on the solution
space. Aspect ratio A is suppressed in the notation of (3.1).

Let DηF define the Frechet derivative of the map F with respect to η. Solving the
linear problem,

DηF (1; l, 0)η = − 1
2

(
η + l−2∂2

xη
)

− Ps + 1 = 0, (3.2)

one finds two categories of non-trivial solutions:

(AS) antisymmetric modes: (η, l) = (φn, �n),

φn = sin(�nx), �n = 2nπ, (3.3)

(CS) centro-symmetric modes: (η, l) = (ϕn, Ln),

ϕn = 2L−1
n

[
cos(Lnx) + 1

2
Ln sin(Lnx) − 1

]
, tan (Ln/2) = Ln/2, (3.4)

where n are positive integers. Type-(AS) solutions deform antisymetrically about the
midplane of the bridge. The solutions have a flip symmetry: φn(x) = −φn(1−x), and the
first eigenmode bifurcates at �1 = 2π, corresponding to the classical Plateau–Rayleigh
limit (cf. figure 1a). Type-(CS) possesses a reflection symmetry: ϕn(x) = ϕn(1 − x),
in which the interfaces deform centro-symmetrically and the first bifurcation point
occurs at L1 ≈ 8.987 (cf. figure 1b). The (AS) solutions are related to sinusoidal
normal-mode perturbations in the analysis of infinitely long bridges, whereas the
(CS) solutions arise due to the finite-bridge geometry. The �1- and L1-mode are the
most dangerous among each of the two classes of solutions as bridge length increases.
Their interaction with the fluid motion is the focus of the following analysis.

3.1. Branch-tracing calculation

The flow-induced pressure and nonlinearity in the curvature modify solutions from
the linear state. Equation (3.1) defines a two-point boundary value problem with
an integral constraint. In figure 3, typical bifurcation diagrams obtained using the
numerical branch-tracing method (Doedel 1981) illustrate how the first two modes,
�1 and L1, are affected by the flow and by each other through the flow. The starting
point is a cylindrical state (η = 0) in the no-flow condition, with length l and aspect
ratio A fixed. The numerical calculation traces the solutions in the parameter space
(l, Ca, Ps, A). Two state variables are defined using projection on the function space
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Figure 3. Schematic bifurcation diagrams obtained from numerical branch-tracing calcu-
lations. The strength of the thermocapillary force increases from (a) to (d). The parameter δ
breaks the midplane symmetry in (e). Solid circles represent singular points. The free-surface
shapes of the corresponding branches are sketched in (a) and (b).

to measure the amplitudes of the solutions:

1
2
ε1 = 〈η, φ1〉 =

∫ 1

0

η φ1dx, (3.5)

1
2
ε2 = 〈η, ϕ1〉 =

∫ 1

0

η ϕ1dx. (3.6)

The bifurcation structures near the singular points in the quiescent case (Ca ≡ 0) are
predicted by the symmetry issues alluded to above (§ 1). Nonlinearity in the curvatures
produces a subcritical pitchfork and a transcritical bifurcation, lying on the (l, ε1)-
and (l, ε2)-planes, respectively (figure 3a; see also figure 1a, b). They correspond to
the pure-mode solutions. The effect of the thermocapillary flow (Ca > 0, figure 3b) is
(i) to deform those branches by shifting the pitchfork bifurcation point away from the
classical 2π limit, and (ii) to break the transcritical singularity into a pair of turning
points. Numerical data indicate that the flow promotes L1 instability (l < 8.987) but
delays the �1-mode bifurcation (l > 2π) by an amount proportional to the magnitude
of Ca. Thus, bridges can be stable even when the lengths are longer than the Plateau–
Rayleigh limit. Among those solutions, shape deformations following the fgh branch
contain only the L1-mode. The bifurcation curves lie entirely within the (l, ε2)-plane.
In contrast, branches following f kh contain mixed modes and form a loop in the
(l, ε1, ε2)-space. By further increasing the value of Ca it is possible to ‘turn over’



106 Y.-J. Chen, R. Abbaschian and P. H. Steen

9.0

8.5

8.0

7.5

7.0

6.5

6.0
0.02 0.04 0.06 0.08 0.100

lmax

A= 0.25

A= 0.5

Ca

Figure 4. Maximum stable bridge length lmax versus the capillary number Ca for A = 0.25
and A = 0.5. Dashed-dotted line represents results from the Lyapunov–Schmidt reduction
procedure (§ 3.2).

the pitchfork to a supercritical bifurcation (figure 3c, d; see also figure 1d), so that
mixed-mode solutions f kh are stabilized and the stable lengths are extended to the
turning-point g in the diagram. In summary, the flow-induced pressure deforms the
original unstable branches and results in stabilization.

Figure 4 plots the maximum bridge length lmax as a function of the thermocapillary
strength Ca, for different aspect ratios A. The region above the marginal stability
curve is unstable. The solid curves from continuation computations are loci of the
relevant singular point (f or g) with increasing values of Ca and are compared
with the dash-dot line from the Lyapunov–Schmidt method (§ 3.2). It is seen that
the marginal stability boundary has a jump at Ca∗. There, the subcritical pitchfork
bifurcation turns supercritical (figure 3c) and the length lmax suddenly jumps from the
value at the first bifurcation (f ) to that at the second bifurcation point (g). Beyond
Ca∗, the classical Plateau–Rayleigh instability is shielded by the fluid motion. Figure 4
also indicates that this critical stress Ca∗ occurs earlier for a thinner liquid annulus
(small A), suggesting that the lubrication flow in a thin film will greatly enhance the
stability with lmax approaching L1 ≈ 8.987 in the extreme case.

Regarding the numerical calculation, we remark that it is difficult to perform
branch continuation directly on a pitchfork singularity since the pitchfork is not
structurally stable. Nevertheless, a turning point is robust (codimension 0) and its
continuation produces reliable results. Thus the loci of turning point g can be found
in a straightforward manner (Ca > Ca∗) to produce the maximum bridge length.
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In contrast, when tracing the pitchfork bifurcation f in the range of Ca < Ca∗,
the formulation (3.1) is modified as follows. Before branch continuation starts, the
pitchfork at f is broken into turning points (figure 3e) by introducing an artificial
perturbation δ in the static pressure: Ps �→ Ps + δx, where δ = 10−6 is used. A non-zero
δ is equivalent to a residual acceleration in the axial direction of the bridge, which
breaks the midplane symmetry of the heating. The pitchfork is then viewed as the
limit of the turning points as δ → 0. In producing figure 4 we start at a point on the
trivial branch, (η, Ca) = (0, 0), with a given length l < 2π. The solution is then traced
using (δ, Ps) as free parameters. When the branch reaches δ = 10−6 we change the free
parameters to (l, Ps) and follow the branch until the turning point is found (figure 3e).
Its position should approximate that of the pitchfork bifurcation. At this point, the
system is lifted by appending F = 0 with an additional condition that demands DηF

to be singular, and the continuation is performed in the (l, Ca, Ps) parameter space.
Parameter δ, acting as a gravity imperfection on the symmetry (Chen et al. 1999),
introduces a shift �l = O(δ2/3) in the true position of the pitchfork bifurcation.
To test the modified approach, exact branching positions for δ ≡ 0 are explicitly
calculated for several Ca values without using the continuation technique; they are
indistinguishable from the results shown in the figure found by the modified approach.

3.2. Symmetry issues and universal unfolding

Near the singular points the bifurcation structures can be obtained analytically by
the Lyapunov–Schmidt reduction procedure (Golubitsky & Schaeffer 1985). For the
(AS)-type solutions, we rescale the bridge length and shape deformation function as

λ1 = 1 − (2π/l)2, η(x) = ε1φ1(x) + w1(x), (3.7)

where w1 is set to be orthogonal to φ1: 〈w1, φ1〉 = 0. The nonlinear map F (h; l, Ca) is

reformulated as F̃ (η; λ1, Ca) so that the singular point of F is shifted to the origin
(η, λ1, Ca) = 0. The projection of F (dropping the tilde) onto the null space φ1,

g1(ε1; λ1, Ca) = 〈F (ε1φ1 + w1; λ1, Ca), φ1〉, (3.8)

provides the local structure of the bifurcation, in view of the self-adjointness of the
linear problem (3.2). The graph of g1 = 0 then gives the bifurcation curves near the
singularity. The perturbation function w1(x) can be shown to be o(ε1) and is obtained
by solving the complementary equation, F − g1φ1 = 0, where the singularity has been
factored out.

The bifurcation equation for the second singularity, g2 = 0, can be obtained by
the same procedure. The corresponding transformations for the bridge length, shape
function and projected map are

λ2 = 1 − (L1/l)2, η(x) = ε2ϕ1(x) + w2(x), (3.9)

g2(ε2; λ2, Ca) = 〈F (ε2ϕ1 + w2; λ2, Ca), ϕ1〉. (3.10)

Note that in this case the singular point of the basic state is at (η, λ2, Ca) = 0.
In the formulation, the long-bridge/small-aspect-ratio condition justifies the

lubrication-type flow assumption which provides the coupling to the interface shape.
The flow-induced pressure therefore depends on the given flow model. Nevertheless,
certain characteristics of the balance equation can be inferred on physical grounds
and are independent of the specific model. It is therefore instructive to first examine a
few generic properties of the ‘reduced’ functions (g1, g2) before presenting the model-
dependent results. Those properties are reflected in the structures of the reduced
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bifurcation functions. Two observations are in order. (i) Owing to heating at the
mid-position, any nonlinear map F which portrays the stress balance on the free
surface must possess a reflection symmetry

F (γ η; λ1, Ca) = γF (η; λ1, Ca), (3.11)

where γ : u(x) → u(1 − x). The equivariance property (3.11) forces the consequent g1

to also preserve the symmetry:

g1(−ε1; λ1, Ca) = −g1(ε1; λ1, Ca). (3.12)

Generically, (3.12) corresponds to a pitchfork structure (cf. figure 3a). (ii) The symm-
etry of the thermocapillary stress demands 〈dF (0; λ2, 0)/dCa, ϕ1〉 �= 0. By the implicit
function theorem (Iooss & Joseph 1981) we infer that there exists a unique branch

of solutions Ca = Ĉa(ε2, λ2) near (ε2, λ2) = 0. Applying the above inequality to the
definition of g2 gives the condition

dg2(0; 0, 0)

dCa
�= 0, (3.13)

which implies that, in the presence of the flow, the transcritical breaks into a turning-
point bifurcation (cf. figure 3b).

The structure of the bifurcation functions for the lubrication model will now be
given. It can be checked that the conditions just discussed for the general case hold
for the specific model. By the procedures outlined, the reduced map g ≡ (g1, g2)
represents a projection of the nonlinear function onto (φ1, ϕ1) near each of the
bifurcation points. The result, written as expansions of εi , is found to be

g1 ∼
(
− 3

32
+ ξ3Ca

)
ε3

1 +
(
− 1

4
λ1 + ξ1Ca

)
ε1 = 0, (3.14)

g2 ∼ − 1

2L1

ε2
2 − 1

4
λ2ε2 − ξ0Ca = 0. (3.15)

In these equations, the coefficients

ξ0 ∼ 6 L1

πA
(
L2

1 − π2
) (

1 − A

3
+

A2

10

)
, (3.16)

ξ1 ∼ 2

5πA2

(
1 +

7A

30
+

3A3

20

)
, ξ3 ∼ 8

105πA4

(
1 + A +

157A2

256

)
, (3.17)

are obtained through the reduction procedure and expressed in the small-A limit. The
coefficient ξ0 is given by directly evaluating the integral in the formula,

ξ0Ca =
Ξ

Θ

∣∣∣∣
h=1

〈σ̂ (x; Ca), ϕ1〉. (3.18)

To obtain ξ1 and ξ3 one must solve for the shape deflection functions wi(x) at each
order. The unfolding parameter Ca preserves the pitchfork but breaks the transcritical
bifurcations present in the classical Young–Laplace problem. A thin-film configuration
(small A) further amplifies this perturbation through the coefficients ξi .

The amplitude of the surface shape is obtained from g = 0 (3.14), (3.15). The
thermocapillary flow induces a deformation

ε1 = 0, ε2 = − 1
4
L1λ2

[
1 −

(
1 − 32ξ0

L1λ2

Ca

)1/2
]
, (3.19)
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which recovers the cylindrical state, ε1 = ε2 = 0, when Ca = 0. A straightforward
calculation using (3.14), (3.15) also gives the positions of the two bifurcations (the
pitchfork f and turning point g) and the criteria Ca∗ at which the pitchfork solutions
turn supercritical. Those singular points are located by the formula gi = dgi/dεi = 0,
and the maximum stable bridge length is given by

lmax ∼
{

2π(1 + 2ξ1Ca), 0 < Ca < Ca∗,

L1

[
1 − (8ξ0Ca/L1)

1/2
]
, Ca∗ < Ca � 1.

(3.20)

Here, Ca∗ ∼ 3/(32ξ3) is derived by setting the coefficient of the cubic term in g1 to
zero. Figure 4 plots the estimate of maximum bridge length using this formula for
A = 0.25 (dash-dot line). This compares favourably with the results of the branch-
tracing calculation. Equations (3.14), (3.15) exhibit properties (i, ii) discussed above
and so provide a specific example of generic features near the two bifurcations. For
Ca∗ predicted by the Lyapunov–Schmidt expansion to remain faithful to the branch-
tracing results when A is not small, more terms will be required in the coefficient of
the cubic term.

4. Discussion
The bifurcation diagrams obtained alternatively by computation and by analysis

may be summarized from a broader viewpoint, one that views the two-mode
interaction as a local interaction. The system falls into a class of bifurcation
problems in two state variables with Z2 invariance: (r, s) �→ (−r, s). By appropriate
transformations of variables the reduced functions (3.14), (3.15) can be put into a
normal form with the same symmetry:

g = [(ms2 − βs + r2 − α)r, s2 + r2 − λ], (4.1)

s ∼ −λ2

8
(2L1)

1/2 − ε2

(2L1)1/2
, r ∼ ε1, λ ∼ L1

32
λ2

1 − ξ0Ca, (4.2)

where (α, β, m) are unfolding parameters (Golubitsky, Stewart & Schaeffer 1988).
Note that (4.1) is suitable for describing the solutions near the double degeneracy
(r, s) = 0, while (3.14), (3.15) depicts the projection of the nonlinear function F

onto each singularity. A mapping between parameters (α, β, m) and (l, Ca, A) can be
obtained if the reduction problem is set up and solved at the double-degenerate point.
This mapping has not been carried out. Yet, even without the detailed mapping,
predictions of (4.1) are useful.

The normal form (4.1) renders the stability and predicts the domains of attraction
of the branching solutions within the context of the corresponding two-dimensional
system. In view of the absence of inertia and consistent with the lubrication model
(2.10), the ‘reduced’ dynamics has a gradient-flow structure:

(ṙ , ṡ) + g(r, s; λ, α, β, m) = 0. (4.3)

Here, the overdot indicates the time derivative with an appropriate time scale.
Its universal unfolding has been solved and all possible bifurcation diagrams are
catalogued in Golubitsky et al. (1988, p. 144). The bifurcation diagrams produced
from (3.14), (3.15) recover some of the diagrams in the catalogue (figure 3). By
comparing the branching structures of the two problems (2.10) and (4.3) we infer
that the eigenvalues of (r, s) modes should agree with those of (ε1, ε2) in a linear
stability analysis. Figure 5(a) illustrates this comparison, in which the signs +/−
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Figure 5. Bifurcation of vector fields near the Hopf bifurcation ‘HB’. Path followed by
increasing the bridge length with a fixed capillary number Ca.

denote stability/instability of the corresponding modes. A prediction of the normal
form (4.1) but not of (3.14), (3.15) is the existence of a Hopf bifurcation corresponding
to standing-wave patterns in the physical system. The discrepancy arises since the
‘local’ interactions included in (4.1) are less local than those in (3.14), (3.15). Guided
by this prediction, we have directly integrated (2.10) for a few cases. Indeed, the full
model shows the birth of a limit cycle in a small window of the parameter space. A
homoclinic orbit encloses a time-periodic solution after collision of the two invariant
manifolds; figure 5(b − d) shows a sketch. The cycle grows with an increasing period
and amplitude, collides with the homoclinic orbit and disappears suddenly. Properties
of such periodic solutions have been examined extensively (Żola̧dek 1984; Arnol’d



Thermocapillary suppression of the Plateau–Rayleigh instability 111

1991). It turns out that detailed mappings between (2.10) and (4.1), (4.3) are needed in
order to use those results to understand the current system, however. Here, one should
note that the periodic solution arises due to mode–mode interaction among capillary
instabilities, whose origin is different from those oscillatory solutions observed in
short bridges (l ≈ 1) of high Reynolds numbers where hydrodynamic instability and
non-axisymmetry are important (Kuhlmann & Rath 1993).

The mechanism of stabilization near l1 = 2π is a suppression of the capillary
disturbance through modification of the interfacial pressure profile. Referred to the
unit interval (0 � z � 1), the destabilizing capillary mode has a sin(2πz) shape with a
corresponding pressure profile that drives fluid from the neck (z = 3/4) to the bulge
(z = 1/4). The thermocapillary flow driven by heating at the midplane (z = 1/2)
results in a pressure profile driving an axial return flow (away from the interface) that
that opposes the capillary flow; the pressure is also antisymmetric about the midplane.
The corresponding thermocapillary-induced deflection −sin(3πz) has a neck at the
midplane. This is consistent with a planar layer where it is known that a bulge occurs
under a hot spot owing to thermocapillary flow. The thermocapillary-induced pressure
profile opposes the capillary flow over (1/4 � z � 3/4) with a net stabilizing effect.

Details of this mechanism are reflected in and can be traced through the
bifurcation equation (3.14). For example, modifications to the motionless base state
are represented by terms proportional to Ca. According to equation (3.1) this can
be a weakening of surface tension under the hot midplane to influence the ‘capillary
pressure’ (first term on the right) or can be the flow-induced ‘thermocapillary pressure’
(last term on the right). It turns out that the order-ε1 stabilization (ξ1Ca term in
equation (3.14)) is due solely to the latter influence. Indeed, the thermocapillary
pressure has a structure (cos(πz) and cos(3πz)) with signs that project on the capillary
pressure sin(2πz) in a stabilizing way. In a similar fashion, the order-ε3

1 stabilization
can be traced to the thermocapillary flow (the dependence of ξ3 on A makes this clear).
Here, the effect of flow is to weaken the subcritical nature of the capillary instability
(geometrically, lessen the curvature of the ‘pitchfork’ in the pitchfork bifurcation).
The surprising result of the finite-amplitude computations is that this stabilizing effect
can ‘turn the bifurcation over’ – can change it from a subcritical to a supercritical
bifurcation.

In assessing the relevance of the proposed model, good estimates from spacelab
experiments for the strength of the thermocapillary force and the amplitude of
the interfacial deformation are most important. Gravity plays a minor role in the
microgravity environment, yet any perturbation that introduces a midplane asymmetry
is accounted for by an unfolding diagram similar to figure 3(e); see § 3.1. Bifurcation
analysis shows that the critical stress is at Ca∗ ∝ A4 for small A, at which stress
the length lmax jumps to the value of the second bifurcation point (ε2-mode), whose
value is close to L1 ≈ 8.987 and is roughly 50% longer than the classical 2π-limit.
A thin layer of liquid reduces the velocity scale (u = O(A)) but greatly enhances the
magnitude of the lubrication pressure that suppresses the Plateau–Rayleigh instability
(cf. equation (3.14)). In practice, employing a thin layer of viscous liquid which
encapsulates a bridge can achieve the same purpose. The induced flow in the outer
fluid (encapsulant) provides an extra pressure gradient in addition to that in the liquid
column. Its effect is to reduce the surface deflection and lower the flow magnitude
further (Saghir et al. 1996). Under this circumstance, encapsulated bridges should be
more stable than bridges of single fluids.

In the spacelab experiments that motivated this study, heating power controlled
the length of the melt (liquid bridges). Various encapsulants (liquids and gas) isolated
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the bridges from the surroundings. Once the long molten zones were formed, the
flow-induced pressures in the inner liquid and outer fluids together acted as an
interfacial stabilizing agent, shielding the liquid columns from breaking apart. The
lubrication pressure is important whether it arises from the inner (bridge) or outer
(encapsulant) liquid. It is proposed here that the symmetrical heating that generates
the thermocapillary flows is the key physical feature responsible for the extra-long
bridges observed. In the model, the lubrication pressure arises from the inner liquid.
The limited observations from the space experiments preclude a rigorous test of
this proposal. We do not know the extent of the solid core, if any, for example.
The predictions in this paper of extra-long finite bridges are testable, however, and
provide a guide for what to look for in future ground-based experiments, should they
be undertaken.

P.H.S. and Y.J.C. gratefully acknowledge support of this work through NASA grant
NAG3-1854. P.H.S. thanks Eric Theisen for help in revision. Support by NASA is
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